

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR

(AUTONOMOUS)

Siddharth Nagar, Narayanavanam Road – 517583

OUESTION BANK (DESCRIPTIVE)

Subject with Code: Structural Analysis (20CE0115)

Course & Branch: B.Tech - Civil

Year & Sem: II-B.Tech & II-Sem

Regulation: R20

<u>UNIT –I</u> INFLUENCE LINES & MOVING LOADS

1	What is meant by Influence Line Diagram (ILD)? State some of the benefits of it.	[L2][CO2]	[3 M]
	A simply supported beam AB is subjected to a point load W. Derive an expression and draw the ILD for reaction at A, reaction at B, shear force & bending moment at a distance of x from support.	[L2][CO2]	[9M]
2	Derive an expression for maximum positive/negative shear force and maximum bending moment for a simply supported beam subjected to two point loads W_1 and W_2 with a constant spacing between them.	[L2][CO2]	[12M]
3	Two point loads of 100kN and 200kN spaced 3m apart cross a girder of 15m from left to right with the 100kN leading first. Draw the influence line for shear force and bending moment and find the value of maximum shear force and bending moment at a section D, 6m from the left hand support. Also, find the absolute maximum bending moment due to the given load system.	[L3][CO2]	[12M]
4	A simple girder of 20m span is traversed by a moving udl of 6m length with an intensity of 20 kN/m from left to right. Analyze for maximum bending moment, maximum $+ve/$ $-ve$ shear force at a section of 4m from left support. Also find the absolute maximum bending moment that occur anywhere in the girder	[L3][CO2]	[12M]
5	In a simply supported girder AB of span 20m, determine the maximum bending moment and maximum shear force at a section 5m from A, due to the passage of a uniformly distributed load of intensity 20kN/m, longer than the span. Also find the location and magnitude of absolute maximum bending moment.	[L3][CO2]	[12M]
6	Derive an expression for maximum positive/negative shear force and maximum bending moment for a simply supported beam subjected to multiple wheel loads with a constant spacing between them.	[L2][CO2]	[12M]
7	Four point loads of 120kN, 160kN, 160kN and 80kN spaced 2m between consecutive loads move on a girder of 25m span from left to right with 120kN load leading. Calculate the maximum bending moment, maximum +ve & -ve shear force at a point of 10m from the left support. Also calculate the position & value of absolute maximum bending moment	[L3][CO2]	[12M]

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS)

Siddharth Nagar, Narayanavanam Road – 517583

OUESTION BANK (DESCRIPTIVE)

Subject with Code: Structural Analysis (20CE0115)

Course & Branch: B.Tech - Civil

Year & Sem: II-B.Tech & II-Sem

Regulation: R20

<u>UNIT –II</u> ENERGY METHODS

1	Define the terma) Strain Energy c) Proof Resilienceb) Resilienced) Modulus of Resilience	[L1][CO3]	[4M]
	Derive an expression for strain energy stored in a beam due to axial loading and due to bending.	[L2][CO3]	[8M]
2	Determine the support reaction for the over-hanging beam using principle of virtual work done. A C B \overrightarrow{P} B \overrightarrow{P} B \overrightarrow{P} C B \overrightarrow{P} C C C C C C C C C C C C C C C C C C C	[L3][CO3]	[6M]
	A simply supported beam of span <i>l</i> carries a concentrated load <i>P</i> eccentrically placed on the beam. Using strain energy method, determine the deflection at the point of application of the load.	[L3][CO3]	[6M]
3	The maximum stress produced by a pull in a bar of length 1m is 150 N/mm ² . The area of cross-sections and length are shown in the figure. Calculate the strain energy stored in the bar if $E = 2 \times 10^5$ N/mm ² P 200mm ² 100mm ² 200mm ² P 475mm 50mm 475mm 475mm 4	[L3][CO3]	[12M]
4	State and derive Castigliano's first theorem	[L2][CO3]	[12M]
5	Find the deflection at the centre of a simply supported beam using Castigliano's theorem carrying a uniformly distributed load of w per unit length over the entire span.	[L3][CO3]	[7M]
	Using Castigliano's theorem, find the deflection at the free end of a cantilever beam carrying a uniformly distributed load of w per unit length over the entire span.	[L3][CO3]	[5M]
6	State and derive Maxwell-Betti's reciprocal theorem	[L2][CO3]	[12M]
7	A simply supported beam of span 6m is subjected to a concentrated load of 45kN at 2m from the left support. Calculate the deflection under the load point. Take $E = 200 \times 10^6 \text{ kN/m}^2$ and $I = 14.0 \times 10^{-6} \text{ m}^4$ using method of virtual work.	[L4][CO3]	[12M]

(AUTONOMOUS)

Siddharth Nagar, Narayanavanam Road – 517583

OUESTION BANK (DESCRIPTIVE)

Subject with Code: Structural Analysis (20CE0115)

Course & Branch: B.Tech - Civil

Year & Sem: II-B.Tech & II-Sem

Regulation: R20

<u>UNIT –III</u> SLOPE DEFLECTION METHOD

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS)

Siddharth Nagar, Narayanavanam Road – 517583

OUESTION BANK (DESCRIPTIVE)

Subject with Code: Structural Analysis (20CE0115)

Course & Branch: B.Tech - Civil

Year & Sem: II-B.Tech & II-Sem

Regulation: R20

<u>UNIT –IV</u> MOMENT DISTRIBUTION METHOD

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY .: PUTTUR

(AUTONOMOUS)

Siddharth Nagar, Narayanavanam Road – 517583

OUESTION BANK (DESCRIPTIVE)

Subject with Code: Structural Analysis (20CE0115)

Course & Branch: B.Tech - Civil

Year & Sem: II-B.Tech & II-Sem

Regulation: R20

<u>UNIT –V</u> MATRIX METHOS OF STRUCTURAL ANALYSIS

1	Explain the steps involved in Flexibility matrix method of analysis		[1 2]
L	Explain the steps involved in Stiffness matrix method of analysis.		[1211]
2	Analyse the fixed beam shown below using flexibility matrix method 10 kN 4 kN/m A B 5 m	[L4][CO6]	[12M]
3	Analyse the continuous beam shown in the figure using flexibility matrix method. $A = \begin{array}{c} 60 \text{ kN/m} \\ \hline 00 \text{ kN/m} \\ \hline 00 \text{ kN} \\ \hline 00 $	[L4][CO6]	[12M]
4	Analyse the continuous beam shown below by flexibility method and draw the bending moment diagram. 30 kN $10 kN/m$ C 4m B $7m$ $7m$ $7m$ $7m$ $7m$ $7m$ $7m$ $7m$	[L4][CO6]	[12M]
5	Analyse the continuous beam shown in the figure by flexibility matrix method 40 kN/m B 120 kN 20 kN/m D 120 kN m D 120 kN m 120 kN m	[L4][CO6]	[12M]
6	Analyse the fixed beam shown below using stiffness matrix method 10 kN + 4 kN/m $A = 5 m + 5 m$	[L4][CO6]	[12M]

Course Code: 20CE0115

7	Analyse the continuous beam shown in the figure using displacement method. Analyse the continuous beam shown in the figure using displacement method. 40 kN B 40 kN B 4m 4m C 2m 2m D 7m	[L4][CO6]	[12M]
8	Analyse the fixed continuous beam shown in the figure by stiffness method and draw the bending moment diagrams $ \begin{array}{c} 120 \text{ kN} \\ 20 \text{ kN} \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	[L4][CO6]	[12M]
9	Analyse the continuous beam by matrix stiffness method $ \begin{array}{c c} 6.4 \text{ kN} & 8 \text{ kN} \\ \hline 6.4 $	[L4][CO6]	[12M]
10	Define the term a) Static determinacy b) Kinematic indeterminacy and c) Generalised co-ordinates	[L1][CO6]	[5M]
	Derive the relationship between flexibility matrices and stiffness matrices	[L2][CO6]	[7M]

Prepared by: S. Venkataraman Asst. Professor/Civil